Эндоплазматический ретикулум строение и функции

Эндоплазматический ретикулум строение и функции

Эндоплазматическая сеть, или эндоплазматический ретикулум (ЭПР), представляет собой систему мембранных канальцев, пронизывающих цитоплазму и тесно контактирующих с другими органоидами клетки. По ЭПР осуществляется внутриклеточный транспорт веществ, а также она является местом синтеза некоторых органических соединений.

На поверхности некоторых мембран ЭПР могут находиться рибосомы, которые осуществляют синтез белков. Такой ЭПР называется шероховатым, или гранулярным.

Гладкий эндоплазматический ретикулум (агранулярный ЭПР)

11. Аппарат Гольджи, строение и функции.
АГ- стопка уплощенных мембранных мешочков-цистерн, которые на одном конце стопки непрерывно образуются, а на другом — отшнуровываются в виде пузырьков. Стопки могут существовать в виде дискретных диктиосом. Функции: в цистернах происходит химическая модификация поступающих клеточных продуктов, в пузырьках — транспорт веществ. Участвует в процессе секреции, синтеза, формировании лизосом, вакуолей, оболочки.

12. Структура, организация лизосом, сферосом, рибосом, микротрубочек, микрофиламентов, микротелец.
Лизосомы (0,2 — 18 мкм) — сферические одномембранные пузырьки с гомогенным содержимым, богатым гидролитическими ферментами. Выполняют функции, связанные с распадом структур и молекул (гидролизируют белки, нуклеиновые кислоты), участвуют в аутофагии, автолизе, эндо- и экзоцитозе.
Сферосомы синтезируют жирные масла.
Рибосомы (17-23 нм) — очень мелкие безмембранные органеллы, состоящие из 2 субчастиц — большой и малой. Содержат белок и РНК приблизительно в равных долях. Находятся в цитоплазме, ядрышке, на поверхности шероховатого ЭПР, в митохондриях и хлоропластах.
Микротрубочки (24 нм) — очень тонкие, длинные цилиндрические органеллы, растущие с одного конца путем добавления белка тубулина. Участвуют в перемещении органелл, ориентации микроибрилл, входят в состав цитоскелета.
Микрофиламенты (5-7 нм) — тончайшие нити белка актина. Формируют цитоскелет, участвуют в эндо- и экзоцитозе.
Микротельца (0,2-1,5 нм) — органеллы несколько неправильной сферической формы, окруженные одинарной мембраной. Содержимое зернистое, с кристаллоидом или нитевидными скоплениями. Обеспечивают превращение жиров в углеводы (глиоксисомы). Содержат фермент каталазу, расщепляющий пероксид водорода (пероксисомы).

13. Строение и функции митохондрий. Происхождение митохондрий.
Митохондрия (до 10 мкм) окружена оболочкой из двух мембран; внутренняя мембрана образует складки — кристы. Матрикс содержит небольшое количество рибосом, 1 кольцевую молекулу ДНК и фосфатные гранулы.
Функции: при анаэробном дыхании в кристах происходит окислительное фосфорилирование и перенос электронов, а в матриксе работают ферменты, участвующие в цикле Кребса и в окислении жирных кислот; осуществляют процессы освобождения энергии и образование АТФ.
Теории первой группы предполагают, что геном органелл происходит от ядерного генома: часть ядерного генома оказалась механически отделена мембранами от основной части и постепенно приобрела способность к независимому функционированию.
Теории второй группы предполагают симбиотические события и геномный материал органелл внеклеточного происхождения: вначале факультативные прокариотические симбионты, с течением времени потеряли часть своих генов и стали зависимы от ядерного генома, став, таким образом, облигатными симбионтами. Постепенно за ними закрепилась и определенная функция внутриклеточного метаболизма.

14. Пластиды. Типы пластид. Взаимопревращение пластид.
Пластиды — наиболее крупные органеллы, свойственные только растительным клеткам. Образуются из пропластид меристематических клеток. Обладают генетической автономией, т.к. имеют собственные ДНК, РНК, рибосомы. Содержат пигменты — хлорофиллы, каротиноиды и их производные.
— Хлоропласты — зелёные пластиды, обеспечивающие фотосинтез, синтез АТФ, липидов, белков. Внутренние выросты — тилакоиды — собранные в стопки, формируют граны, на поверхности которых протекают световые реакции фотосинтеза.
— Хромопласты — пластиды, окрашенные в желтый — красный цвет благодаря наличию каротиноидов (каротина, ксантофила).
— Лейкопласты — бесцветные пластиды, состоящие из белково-липидной стромы. Характерны для клеток меристемы, запасающей ткани и эпидермы. амилопласты — синтезируют вторичный крахмал; протеопласты — образуют запасные белки; олеопласты — накапливают жирные масла.
Превращения: лейкопласты — в хлоропласты (позеленение клубней картофеля на свету); хромопласты – в хлоропласты (позеленение освещённой части корнеплода моркови); хлоропласты — в лейкопласты и хромопласты (созревание плодов помидора).
— Хроматофоры — пластиды водорослей. Содержат, помимо хлорофиллов a, b, c, d, дополнительные специфические пигменты (фикоциан, фикоэритрины и др.).

15. Вакуоли. Химический состав клеточного сока. Образование вакуолей.
Вакуоль — пространство в цитоплазме, отграниченное от неё тонопластом и заполненное клетоным соком. Функции вакуолей — накопление запасных, экскреторных веществ, воды, что обусловливает осмотическое давление и поддержание тургора клеток.
Клеточный сок вакуолей вырабатывается цитоплазмой. Он более вязкий, чем вода, не имеет никакой внутренней структуры (оптически пуст). На 90% клеточный сок состоит из воды, в которой растворены разнообразные минеральные и органические соединения — углеводы (сахара, полисахариды, слизи, камеди), органические кислоты (лимонная, яблочная, щавлевая, янтарная. ) и их соли, аминокислоты, протеины пигменты (антоциан, антохлор, флавоноиды), гликозиды, танины, алкалоиды, витамины, сапонины и др.
Образование: молодые клетки оычно имеют густую цитоплазму без вакуолей, но по мере их роста между слоями ЭПС появляется множество мелких полостей; в их образовании участвуют диктиосомы, пузырьки Гольджи, цистерны и агранулярные пузырьки ЭПР; во взрослой клетке вакуоли сливаются в одну центральную вакуоль, оттесняющую протопласт к оболочке.

16. Оболочка растительной клетки. Химический состав и молекулярная организация оболочки. Образование клеточной оболочки.
Оболочка растительной клетки ограничивает и защищает протопласт, участвует в поглощении, проведении и секреции веществ. В делящейся клетке сначала образуется клеточная пластинка, превращающаяся в срединную пластинку, а затем формируется первичная оболочка. Она тонкая, эластичная, состоит из пектиновых веществ, целлюлозы и гемицеллюлоз. По мере роста клетки оболочка утолщается путём наслоения и образования вторичной оболочки. В результате клеточная оболочка состоит из первичной и вторичной оболочек. Опорно-структурными единицами вторичной оболочки являются молекулы целлюлозы, объединенные в цепочки — мицеллы. Пучки мицелл образуют микрофибриллы, собранные в волокнистые фибриллы. Пространства между мицеллами заполняет пластический матрикс из пектатов и гемицеллюлоз.

17. Рост клеточной оболочки. Первичная и вторичная оболочка. Поры оболочки. Перфорации. Мацерация.
Первичная оболочка тонкая, эластичная, состоит из пектиновых веществ, целлюлозы и гемицеллюлоз. По мере роста клетки оболочка утолщается путём наслоения и образования вторичной оболочки. Она может оставаться целлюлозной эластичной или претерпевать химические изменения, терять элластичность, приобретать дополнительные свойства. Первичные оболочки клеток утолщаются обычно неравномерно и всегда имеются тонкие, не утолщенные участки клеточной оболочки — поры или сквозные отверстия — перфорации. Простые поры состоят из порового отверстия и порового канала: прямые, косые, щелевидные, разветвлённые поры. Более сложное строение имеют окаймленные и полуокаймленные поры проводящих тканей.
Мацерация — разрушение межклеточного вещества, ведущее к разъединению клеток. Естественным путём она происходит при переходе протопектина в пектин в процессе созревания сочных плодов.

18. Утолщения клеточной оболочки. Вторичные химические изменения клеточной стенки. Образование межклетников.
Как правило, оболочки вегетативных клеток утолщаются во внутрь клетки, а оболочки спор и цветочной пыльцы нарастают снаружи в виде шипов, валиков и пр.
Одревеснение (лигнификация) — пропитывание оболочки лигнином; ведёт к отмиранию протопласта, понижает эластичность клеточных стенок, повышает твёрдость, прочность и стойкость, фиксирует форму.
Опробковение (суберинизация) — пропитывание клеточной оболочки жироподобным веществом — суберином. При этом клетки отмирают, теряют эластичность, становятся водо- и газонепроницаемыми, стойкими к гниению.
Кутинизация — процесс выделения жироподобного вещества — кутина во внешнюю стенку клеток эпидермы, а также образование наружного воскоподобного слоя — кутикулы. Кутинизированные клетки живые, оболочки слабо проницаемы для воды и газов, надежно защищают от перегрева, переохлаждения, проникновения микроорганизмов и др.
Минерализацию клеточной оболочки вызывают аморфные или кристаллические минеральные вещества, чаще всего кремнезём, иногда карбонаты.
Минерализованные оболочки становятся твёрдыми, жёсткими, но хрупкими и ломкими.
Ослизнение — прцесс, связанный с изомерными преобразованиями полисахаридов оболочки, приводящими к появлению слизи. Свойственно корневым волоскам, эпидерме семян, что способствует удержанию влаги, термозащите, закреплению в субстрате.
Камедетечение (гуммоз) — патологическое посттравматическое ослизнение клеток древесины или сердцевины, при котором оболочки и содержимое клеток превращаются в камеди, или гумми.
При частичной мацерации, когда срединная пластинка разрушается только по углам клеток, происходит образование межклетников.

Читайте также:  Курс лечения при аллергии супрастином

19. Жидкие углеводы — моно-, ди-, полисахариды.?
Углеводы — органические соединения, в состав которых входят углерод, кислород и водород. Углеводы — в растениях — первичные продукты фотосинтеза и основные исходные продукты биосинтеза других веществ.
Глюкоза — углевод из группы моносахаридов; один из ключевых продуктов обмена веществ, обеспечивающий живые клетки энергией в процессах дыхания, гликолиза, брожения. Глюкоза: хорошо растворима в воде; имеет сладкий вкус; в значительных количествах содержится в плодах винограда и
в меде; входит в состав сахарозы, лактозы; образует крахмал, гликоген и целлюлозу.
Сахароза — дисахарид, образованный остатками глюкозы и фруктозы. Сахароза: важная транспортная форма углеводов в растениях; легко превращается в запасные крахмал и инулин; самый сладкий из всех
естественных употребляемых в пищу углеводов; является основной составляющей тростникового сахара и сахарной свеклы.
Мальтоза — дисахарид, образованный двумя остатками глюкозы. В живых организмах мальтоза образуется при расщеплении крахмала и гликогена ферментами амилазами.
Полисахариды — высокомолекулярные углеводы, образованные остатками моносахаридов или их производных. Полисахариды присутствуют во всех организмах, выполняют функции запасных, опорных, защитных веществ. Полисахариды участвуют в иммунных реакциях, обеспечивают сцепление
клеток в тканях растений и животных, составляют основную массу органического вещества в биосфере. Инулин — полисахарид, образованный остатками фруктозы. Инулин — запасной углевод многих (сложноцветных) растений. Инулин используется как заменитель крахмала и сахара при
сахарном диабете.

Маннаны — полисахариды, образованные остатками моносахарида маннозы. Маннаны — запасные и опорные углеводы бактерий, грибов, а также высших растений; маннаны входят в состав клеточных
стенок. Пектиновые вещества — полисахариды, образованные остатками
галактуровой кислоты. Пектиновые вещества:
— присутствуют во всех наземных растениях (в плодах) и в некоторых
водорослях;
— способствуют поддержанию в тканях тургора, повышают засухоустойчивость
растений, устойчивость овощей и плодов при хранении.

20. Твердые полисахариды — крахмал: виды, физико-химические свойства; форма запасания.
Образуется и откладывается в пластидах в виде бесцветных твердых зерен разнообразной формы. По способу образования различают два вида крахмала: первичный, или ассимиляционный, и вторичный. Первичный крахмал образуется при фотосинтезе в хлоропластах, существует кратковременно и под действием фермента диастазы гидролизуется до глюкозы, передвигающейся по всем частям растения. Вторичный крахмал синтезируется из продуктов гидролиза первичного крахмала. Его подразделяют на транзиторный, запасной и оберегаемый. Транзиторный. или переходной, крахмал образуется и расщепляется на путях передвижения растворов глюкозы. Оберегаемый крахмал накапливается в корневом чехлике, эндодерме, содействует росту и тропизму органов. Запасной крахмал откладывается в амилопластах запасающих тканей корней, корневищ, клубней, плодов, семян и в меньшей степени др. органов. Крахмальные зерна запасного крахмала формируются путем заложения образовательного центра и наслоения вокруг него плотных, темных — дневных слоев и обводненных, светлых — ночных слоев крахмала. Крахмальные зерна могут быть концентрическими (образовательный и геометрический центры совпадают) и эксцентрическими (образовательный центр смещен); простыми (с одним центром), сложными (с несколькими центрами и слоистостью вокруг них); полусложными (с несколькими центрами, имеющими собственные, а также общие слои) и сложно-полусложными (соединение простого и полусложного зерна).

Эндоплазматический ретикулум — это сложная трехмерная мембранная система неопределенной протяженности. В разрезе эндоплазматический ретикулум выглядит как две элементарные мембраны с узким прозрачным пространством между ними (рис. 2-5, В и 2-20). Форма и протяженность эндоплазматического ретикулума зависят от типа клетки, ее метаболической активности и стадии дифференцировки. Например, в клетках, секретирующих или запасающих белки, эндоплазматический ретикулум имеет форму плоских мешочков, или цистерн, с многочисленными рибосомами, связанными с его внешней поверхностью. Эндоплазматический ретикулум, несущий рибосомы, называют шероховатым эндоплазматическим ретикулумом (рис. 2-5, В, 2-19 и 2-20). Полисомы и шероховатый эндоплазматический ретикулум — основные места синтеза белка. Напротив, клетки, которые секретируют липиды, имеют обширную систему трубочек, на которых нет рибосом. Эндоплазматический ретикулум, нс имеющий рибосом, называют гладкими эндоплазматическим ретикулумом. Гладкий эндоплазматический ретикулум обычно имеет трубчатую форму. Шероховатый и гладкий эндоплазматические ретикулумы могут присутствовать в одной и той же клетке. Как правило, между ними имеются многочисленные связи.

Рис. 2-20. Параллельные тяжи шероховатого эндоплазматического ретикулума (эндоплазматического ретикулума, усеянного рибосомами) видны на срезе клетки листа папоротника Vittaria guineensis . Относительно светлые участки — вакуоли

По-видимому, эндоплазматический ретикулум функционирует как коммуникационная система клетки. На некоторых электронных микрофотографиях можно видеть, что он связан с внешней оболочкой ядра. Фактически эти две структуры образуют единую мембранную систему. Когда ядерная оболочка во время деления клетки разрывается, ее обрывки напоминают фрагменты эндоплазматического ретикулума. Легко представить себе эндоплазматический ретикулум как систему транспортировки веществ, например, белков и липидов, в разные части клетки. Кроме того, эндоплазматические ретикулумы соседних клеток соединяются через цитоплазматические тяжи — плазмодесмы, — которые проходят сквозь клеточные оболочки (см. с.39).

Эндоплазматический ретикулум — основное место синтеза клеточных мембран. По-видимому, в некоторых растительных клетках здесь образуются мембраны вакуолей и микротелец, а также цистерны диктиосом.

Аппарат Гольджи

Термин аппарат Гольджи используется для обозначения всех диктиосом, или телец Гольджи, в клетке. Диктиосомы — это группы плоских, дисковидных пузырьков, или цистерн, которые по краям разветвляются в сложную систему трубочек (рис. 2-21). Диктиосомы в клетках высших растений обычно состоят из четырех — восьми цистерн, собранных вместе.

Рис. 2-21. Диктиосома состоит из группы плоских мембранных мешочков, связанных с пузырьками, которые, по-видимому, отпочковываются от мешочков. Диктиосома служит«центром упаковки» эукариотической клетки и играет ключевую роль в процессах секреции. А. Цистерны диктиосомы паренхимной клетки стебля хвоща Equisetum hyemale , видимые на срезе. Б. Одиночная цистерна, вид с поверхности. Стрелки указывают на многочисленные секреторные пузырьки вдоль краев цистерн

Обычно в пачке цистерн различают формирующуюся и созревающую стороны. Мембраны формирующихся цистерн по структуре напоминают мембраны эндоплазматического ретикулума, а мембраны созревающих цистерн — плазматическую мембрану (рис. 2-22).

Диктиосомы участвуют в секреции, а у большинства высших растений — в образовании клеточных оболочек. Полисахариды клеточной оболочки, синтезируемые диктиосомами, накапливаются в пузырьках, которые затем отделяются от созревающих цистерн. Эти секреторные пузырьки мигрируют и сливаются с плазматической мембраной (рис. 2-22); при этом содержащиеся в них полисахариды встраиваются в клеточную оболочку. Продукты, накапливающиеся в диктиосомах, не всегда синтезируются ими. Некоторые вещества образуются в других структурах, например, в эндоплазматическом ретикулуме, а затем транспортируются в диктиосомы, где видоизменяются перед секрецией. Хороший пример подобных веществ — гликопротеины (углеводно- белковые соединения), важный строительный материал клеточной оболочки. Белковая часть синтезируется полисомами шероховатого эндоплазматического ретикулума, углеводная — в диктиосомах, где обе части объединяются, образуя гликопротсины.

Мембраны — динамические, подвижные структуры, которые постоянно наменяют свою форму и площадь. На подвижности клеточных мембран основана концепция эндомембранной системы. Согласно этой концепции, внутренние мембраны цитоплазмы (за исключением мембран митохондрий и пластид) представляют собой единое целое и берут начало от эндоплазматического ретикулума. Новые цистерны диктиосом образуются из эндоплазматического ретикулума через стадию промежуточных пузырьков, а секреторные пузырьки, отделяющиеся от диктиосом, в конечном итоге способствуют формированию плазматической мембраны (рис. 2-22). Таким образом, эндоплазматический ретикулум и диктиосомы образуют функциональное целое, в котором диктиосомы играют роль промежуточных структур в процессе преобразования мембран, подобных эндоплазматическому ретикулуму, в мембраны, подобные плазматической.

Читайте также:  Альбендазола аналоги

Важно отметить, что даже в тканях, клетки которых слабо растут и делятся, постоянно происходит обновление мембранных компонентов.

Рис. 2-22. Схематическая иллюстрация эндомембран ной концепции. Новые мембраны синтезируются на шероховатом эндоплазматическом ретикулуме. Мелкие пузырьки отпочковываются от гладкой поверхности эндоплазматического ретикулума и переносят содержащиеся в них вещества и мембраны к формирующейся стороне диктиосомы. Секреторные пузырьки, отпочковывающиеся от цистерн созревающей стороны диктиосомы, мигрируют затем к плазматической мембране и сливаются с ней, добавляя новую порцию мембран и строительных материалов

Микротрубочки

Микротрубочки, обнаруженные практически во всех эукариотических клетках, — это тонкие цилиндрические структуры диаметром около 24 нм. Длина их варьирует. Каждая микротрубочка состоит из субъединиц белка, называемого тубулином. Субъединицы образуют 13 продольных нитей, окружающих центральную полость. Микротрубочки представляют собой динамические структуры, они регулярно разрушаются и образуются вновь на определенных стадиях клеточного цикла (см. рис. 2-15). Их сборка происходит в особых местах, которые называются центрами организации микротрубочек и в растительных клетках имеют слабо выраженную аморфную структуру.

У микротрубочек много функций. В растягивающихся и дифференцирующихся клетках микротрубочки, расположенные около внутренней поверхности плазматической мембраны, по-видимому, участвуют в образовании клеточной оболочки, контролируя упаковку целлюлозных микрофибрилл, которые откладываются цитоплазмой на растущую клеточную оболочку (рис. 2-23). Направление растяжения клетки определяется в свою очередь ориентацией целлюлозных микрофибрилл в клеточной оболочке. Микротрубочки направляют пузырьки диктиосом к формирующейся оболочке. подобно нитям веретена, которые образуются в делящейся клетке, и, по-видимому, играют роль в формировании клеточной пластинки (первоначальной границы между дочерними клетками). Кроме того, микротрубочки — важный компонент жгутиков и ресничек, в движении которых, по-видимому, играют немаловажную роль.

Рис. 2-23. Микротрубочки (отмечены стрелками), видимые на продольном (А) и поперечном (Б) срезах клеток листа папоротника Botrychium virginianum . А. Срез прошел более или менее параллельно клеточной оболочке у внутренней поверхности; видна плазматическая мембрана. Б. Можно видеть, что микротрубочки отделены от клеточной оболочки плазматической мембраной

Микрофиламенты

Микрофиламенты, подобно микротрубочкам, найдены практически во всех эукариотических клетках. Они представляют собой длинные нити толщиной 5 — 7 нм, состоящие из сократительного белка актина. Пучки микрофиламентов встречаются во многих клетках высших растений (рис. 2-24) и, по-видимому, играют определяющую роль в токах цитоплазмы. Микрофиламенты вместе с микротрубочками образуют гибкую сеть, называемую цитоскелетом.

Рис. 2-24. Пучок микрофиламентов в клетке листа папоротника олений рог ( Platycerium bifurcatum )

Основное вещество

Еще недавно основное вещество клетки считали гомогенным богатым белком раствором с малым количеством структур или вообще беструктурным. Однако последние исследования клеток животных показывают, что основное вещество обладает сложной структурой. Под высоковольтным электронным микроскопом можно увидеть, что основное вещество представляет собой трехмерную решетку, построенную из тонких (диаметром 3 — 6 нм) тяжей, заполняющих всю клетку. Другие компоненты цитоплазмы, в том числе микротрубочки и микрофиламенты, подвешены к этой микротрабекулярной решетке.

Микротрабекулярная решетка делит клетку на две фазы: богатую белком (тяжи решетки) и богатую водой, заполняющую пространство между тяжами. Вместе с водой решетка имеет консистенцию геля — это настоящий живой гель.

Считается, что к микротрабекулярной решетке прикреплены органеллы, она осуществляет связь между отдельными частями клетки и направляет внутриклеточный транспорт. Есть данные, что и клетки растений имеют микротрабекулярную решетку.

Липидные капли

Липидные капли — структуры сферической формы, придающие гранулярность цитоплазме растительной клетки под световым микроскопом. На электронных микрофотографиях липидные капли выглядят аморфными (рис. 2-25). Похожие, но обычно более мелкие капли встречаются в пластидах (рис. 2-7, А).

Рис. 2-25. Компоненты цитоплазмы в паренхимной клетке утолщенного стебля, или клубнелуковицы, полушника ( Isoeles muricata ). По сторонам и ниже митохондрии, расположенной почти в центре электронной микрофотографии, можно видеть две липидные капли. Над митохондрией, несколько в стороне, находится цистерна эндоплазматического ретикулума, которая кажется раздувшейся. Некоторые вакуоли, возможно, произошли таким путем от эндоплазматического ретикулума. Часть вакуоли видна вверху микрофотографии. Плотный материал в вакуоли — таннин

Липидные капли первоначально принимали за органеллы и называли сферосомами. Считалось, что они окружены двуслойной или однослойной мембраной. Однако последние данные показывают, что у липидных капель нет мембраны, но они могут быть покрыты белком.

Эрганические вещества

Эргастические вещества — это «пассивные» продукты протопласта: запасные вещества или отходы. Они могут появляться и исчезать в разные периоды клеточного цикла. Мы уже говорили о некоторых эргастических веществах: зернах крахмала, кристаллах, антоциановых пигментах и липидных каплях. Другими примерами подобных веществ могут служить смолы, камеди, таннины и белковые тела. Эргастические вещества входят в состав клеточной оболочки, основного вещества цитоплазмы и органелл, в том числе вакуолей.

Жгутики и реснички

Жгутики и реснички — это похожие на волоски структуры, которые отходят от поверхности многих эукариотических клеток. Они относительно тонки и имеют постоянный диаметр (около 0,2 мкм), но их длина колеблется от 2 до 150 мкм. Условно более длинные и немногочисленные из них называют жгутиками, а более короткие и многочисленные — ресничками. Четких различий между этими двумя типами структур тем не менее не существует, и мы будем использовать термин жгутик для обозначения обоих.

У некоторых водорослей и грибов жгутики являются локомоторными органами, с помощью которых организмы передвигаются в воде. У растений (например, мхов, печеночников, папоротников и некоторых голосеменных) только половые клетки (гаметы) имеют жгутики. Некоторые жгутики (перистые) несут один или два ряда мелких боковых отростков, другие (гладкие) лишены подобных образований (рис. 2-26).

Рис. 2-26. Два типа жгутиков — перистый и гладкий — обнаружены у одной клетки колониального организма Synura pe tersenii (золотистой водоросли). Перистый жгутик (слева) более длинный, чем гладкий (справа)

Внутреннее строение жгутиков удалось установить только с помощью электронного микроскопа. Каждый жгутик имеет определенную организацию (рис. 2-27). Наружное кольцо из девяти пар микротрубочек окружает две дополнительные микротрубочки, расположенные в центре жгутика. Содержащие ферменты «ручки» отходят от одной микротрубочки каждой из наружных пар. Эта основная схема организации 9+2 обнаружена во всех жгутиках эукариотических организмов.

Движение жгутиков и ресничек осуществляется автономно; жгутики и реснички способны двигаться и после отделения от клеток. Некоторые исследователи считают, что движение жгутиков основано на скольжении микротрубочек, при этом наружные пары микротрубочек движутся одна вдоль другой без сокращения. Скольжение пар микротрубочек относительно друг друга вызывает локальное изгибание жгутика. По-видимому, скольжение происходит в результате контакта «ручек» одной пары микротрубочек с микротрубочками соседней пары.

Жгутики «вырастают» из цитоплазматических цилиндрических структур, называемых базальными тельцами, образующими и базальную часть жгутика (рис. 2-27). Базальные тельца имеют внутреннее строение, напоминающее строение жгутика, за исключением того, что наружные трубочки в базальном тельце собраны в тройки, а не в пары и две центральные трубочки отсутствуют.

Рис. 2-27. А. Продольный срез жгутика гаметы зеленой водоросли Vivaria . Обратите внимание на то, что мембрана, окружающая собственно жгутик, представляет собой единое целое с плазматической мембраной. Б. Поперечный срез через жгутик Ulvaria . Видна типичная структура 9+2. В. Поперечный срез через базальное тельце жгутика Vivaria . Обратите внимание на то, что базальное тельце имеет кольцо из 9 триплетов микротрубочек и не имеет центральных микротрубочек

Читайте также:  Исследование са 125 результат

Впервые эндоплазматический ретикулум был обнаружен американским учёным К. Портером в 1945 году посредством электронной микроскопии.

Строение

Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.

Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов против градиента концентрации. Нити, образующие эндоплазматический ретикулум имеют в поперечнике 0,05-0,1 мкм (иногда до 0,3 мкм), толщина двухслойных мембран, образующих стенку канальцев составляет около 50 ангстрем (5 нм, 0.005 мкм). Эти структуры содержат ненасыщенные фосфолипиды, а также некоторое количество холестерина и сфинголипидов. В их состав также входят белки.

Трубочки, диаметр которых колеблется в пределах 0.1-0.3 мкм, заполнены гомогенным содержимым. Их функция — осуществление коммуникации между содержимым пузырьков ЭПС, внешней средой и ядром клетки.

Эндоплазматический ретикулум не является стабильной структурой и подвержен частым изменениям.

Выделяют два вида ЭПР:

  • гранулярный эндоплазматический ретикулум
  • агранулярный (гладкий) эндоплазматический ретикулум

На поверхности гранулярного эндоплазматического ретикулума находится большое количество рибосом, которые отсутствуют на поверхности агранулярного ЭПР.

Гранулярный и агранулярный эндоплазматический ретикулум выполняют различные функции в клетке.

Функции эндоплазматического ретикулума

При участии эндоплазматического ретикулума происходит трансляция и транспорт белков, синтез и транспорт липидов и стероидов. Для ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза). Эндоплазматический ретикулум содержит внутриклеточный запас кальция, который является, в частности, медиатором сокращения мышечной клетки. В клетках мышечных волокон расположена особая форма эндоплазматического ретикулума — саркоплазматическая сеть.

Функции агранулярного эндоплазматического ретикулума

Агранулярный эндоплазматический ретикулум участвует во многих процессах метаболизма. Ферменты агранулярного эндоплазматического ретикулума участвуют в синтезе различных липидов и фосфолипидов, жирных кислот и стероидов. Также агранулярный эндоплазматический ретикулум играет важную роль в углеводном обмене, обеззараживании клетки и запасании кальция. В частности, в связи с этим в клетках надпочечников и печени преобладает агранулярный эндоплазматический ретикулум.

Синтез гормонов

К гормонам, которые образуются в агранулярном ЭПС, принадлежат, например, половые гормоны позвоночных животных и стероидные гормоны надпочечников. Клетки яичек и яичников, ответственные за синтез гормонов, содержат большое количество агранулярного эндоплазматического ретикулума.

Накопление и преобразование углеводов

Углеводы в организме накапливаются в печени в виде гликогена. Посредством гликолиза гликоген в печени трансформируется в глюкозу, что является важнейшим процессом в поддержании уровня глюкозы в крови. Один из ферментов агранулярного ЭПС отщепляет от первого продукта гликолиза, глюкоза-6-фосфата, фосфогруппу, позволяя таким образом глюкозе покинуть клетку и повысить уровень сахаров в крови.

Нейтрализация ядов

Гладкий эндоплазматический ретикулум клеток печени принимает активное участие в нейтрализации всевозможных ядов. Ферменты гладкого ЭПР присоединяют встретившиеся молекулы активных веществ, которые таким образом могут быть растворены быстрее. В случае непрерывного поступления ядов, медикаментов или алкоголя, образуется большее количество агранулярного ЭПР, что повышает дозу действующего вещества, необходимую для достижения прежнего эффекта.

Саркоплазматический ретикулум

Особую форму агранулярного эндоплазматического ретикулума, саркоплазматический ретикулум, образует ЭПС в мышечных клетках, в которых ионы кальция активно закачиваются из цитоплазмы в полости ЭПР против градиента концентрации в невозбуждённом состоянии клетки и освобождаются в цитоплазму для инициации сокращения. Концентрация ионов кальция в ЭПС может достигать 10 −3 моль, в то время как в цитозоле порядка 10 −7 моль (в состоянии покоя). Таким образом, мембрана саркоплазматического ретикулума обеспечивает активный перенос против градиентов концентрации больших порядков. И приём и освобождение ионов кальция в ЭПС находится в тонкой взаимосвязи от физиологических условий.

Концентрация ионов кальция в цитозоле влияет на множество внутриклеточных и межклеточных процессов, таких как: активация или торможение ферментов, экспрессия генов, синаптическая пластичность нейронов, сокращения мышечных клеток, освобождение антител из клеток имунной системы.

Функции гранулярного эндоплазматического ретикулума

Гранулярный эндоплазматический ретикулум имеет две функции: синтез белков и производство мембран.

Синтез белков

Белки, производимые клеткой, синтезируются на поверхности рибосом, которые могут быть присоединены к поверхности ЭПС. Полученные полипептидные цепочки помещаются в полости гранулярного эндоплазматического ретикулума (куда попадают и полипептидные цепочки, синтезированные в цитозоле), где впоследствии правильным образом обрезаются и сворачиваются. Таким образом, линейные последовательности аминокислот получают после транслокации в эндоплазматический ретикулум необходимую трёхмерную структуру, после чего повторно перемещаются в цитозоль.

Синтез мембран

Рибосомы, прикреплённые на поверхности гранулярного ЭПР, производят белки, что, наряду с производством фосфолипидов, среди прочего расширяет собственную поверхность мембраны ЭПР, которая посредством транспортных везикул посылает фрагменты мембраны в другие части мембранной системы.

Смотри также

  • Ретикулоны — белки эндоплазматического ретикулума.

Wikimedia Foundation . 2010 .

  • Гранхольм Б. Ф.
  • Гранфаллон

Смотреть что такое «Гранулярный эндоплазматический ретикулум» в других словарях:

Эндоплазматический ретикулум — (ЭПР) (лат. reticulum сеточка) или эндоплазматическая сеть (ЭПС) внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и канальцев … Википедия

Шероховатый эндоплазматический ретикулум — Эндоплазматический ретикулум (ЭПР) (лат. reticulum сеточка) или эндоплазматическая сеть (ЭПС) внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и… … Википедия

Эндоплазматический ретикулюм — Эндоплазматический ретикулум (ЭПР) (лат. reticulum сеточка) или эндоплазматическая сеть (ЭПС) внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и… … Википедия

Ретикулум эндоплазматический — * рэтыкулум эндаплазматычны * endoplasmic reticulum сеть внутри цитоплазматической мембраны и мембранных преобразований. Выделяют гладкий, или агранулярный (ГЭР), и шероховатый, или гранулярный, Р. э. (ШЭР). ГЭР это система мембран, в которой… … Генетика. Энциклопедический словарь

Цитоплазматический ретикулум — Эндоплазматический ретикулум (ЭПР) (лат. reticulum сеточка) или эндоплазматическая сеть (ЭПС) внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и… … Википедия

эндоплазмический ретикулум — Endoplasmic Reticulum (ER) Эндоплазмический ретикулум (ЭР) 1. Шероховатый (гранулярный) эндоплазматический ретикулум система плоских мешочков в цитоплазме цистерн, стенка которых состоит из мембраны. К внешней поверхности мембраны… … Толковый англо-русский словарь по нанотехнологии. — М.

Цитоплазматическая сеть — Эндоплазматический ретикулум (ЭПР) (лат. reticulum сеточка) или эндоплазматическая сеть (ЭПС) внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и… … Википедия

Шероховатая эндоплазматическая сеть — Эндоплазматический ретикулум (ЭПР) (лат. reticulum сеточка) или эндоплазматическая сеть (ЭПС) внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и… … Википедия

Эндоплазматическая сеть — Эндоплазматический ретикулум (ЭПР) (лат. reticulum сеточка) или эндоплазматическая сеть (ЭПС) внутриклеточный органоид эукариотической клетки, представляющий собой разветвлённую систему из окружённых мембраной уплощённых полостей, пузырьков и… … Википедия

Клетка — I Клетка (cytus) основная структурно функциональная единица, определяющая строение, жизнедеятельность, развитие и размножение животных и растительных организмов за исключением вирусов; элементарная живая система, способная к обмену веществ с… … Медицинская энциклопедия

Ссылка на основную публикацию
Эльтромбопаг цена
Цена 1 180 EUR за 1 упак Револейд относится к фармакологической группе веществ, которые стимулируют образование клеточных элементов крови. Действующим...
Экстракт лечебных трав
24 Май 2017 Фитосомы — это улучшенные формы препаратов на основе лекарственных трав, которые лучше усваиваются, действуют и, в итоге,...
Экстракт пантов благородного оленя
С древних времен оленьи рога использовались человеком для создания предметов декора, изделий личного обихода, украшений, ножевых рукоятей, застежек, орудий труда....
Эмболия мозговых сосудов
Центральный научно-исследовательский институт судебной психиатрии имени В. П. Сербского (дир. — доцент Г. В. Морозов), Москва Поступила в редакцию 25/IV...
Adblock detector